Investigation of Entropy Generation in Stagnation Point Flow of Nano Fluid Impinging on the Cylinder with Constant Wall Heat Flux
Authors
Abstract:
: In this research, dimensionless temperature and entropy generation for the steady state flow in the stagnation point of incompressible nanofluid impinging on an infinite cylinder have been investigated. The impinging free stream is steady with a constant strain rate k. Similarity solution of the Navier-Stokes equations and energy equation is derived in this problem. A reduction of these equations is obtained using appropriate transformations introduced in this research. The general self similar solution is obtained when the heat flux on the cylinder wall is constant. All solutions brought above are presented for Reynolds numbers Re=ka^2/2vf that range from 0.1 to 1000 and the selected values of particle fractions, where a is the radius of the cylinder and υf is the kinematic viscosity of the base fluid. Results show that for Reynolds numbers examined, as the particle fraction increases, the depth of diffusion of the fluid velocity field in axial direction decreases, whereas Nusselt number is raised. Also, the maximum value of entropy generation has been calculated.
similar resources
Axi-symmetric Stagnation–Point Flow and Heat Transfer Obliquely Impinging on a Rotating Circular Cylinder
Laminar stagnation flow, axi-symmetrically yet obliquely impinging on a rotating circular cylinder, as well as its heat transfer is formulated as an exact solution of the Navier-Stokes equations. Rotational velocity of the cylinder is time-dependent while the surface transpiration is uniform and steady. The impinging stream is composed of a rotational axial flow superposed onto irrotational rad...
full textAixsymmetric Stagnation Point Flow of a Viscous Fluid on a Moving Cylinder with Time Dependent Axial Velocity
The unsteady viscous flow in the vicinity of an axisymmetric stagnation point of an infinite moving cylinder with time-dependent axial velocity is investigated. The impinging free stream is steady with a strain rate k. An exact solution of the Navier-Stokes equations is derived in this problem. A reduction of these equations is obtained by use of appropriate transformations. The general self-si...
full textthe effects of changing roughness on the flow structure in the bends
flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...
Entropy generation analysis of non-newtonian fluid in rotational flow
The entropy generation analysis of non-Newtonian fluid in rotational flow between two concentric cylinders is examined when the outer cylinder is fixed and the inner cylinder is revolved with a constant angular speed. The viscosity of non-Newtonian fluid is considered at the same time interdependent on temperature and shear rate. The Nahme law and Carreau equation are used to modeling dependenc...
full textan investigation of the types of text reduction in subtitling: a case study of the persian film gilaneh with english subtitles
چکیده ندارد.
15 صفحه اولEFFECT OF TIME-DEPENDENT TRANSPIRATION ON AXISYMMETRIC STAGNATION-POINT FLOW AND HEATTRANSFER OF A VISCOUS FLUID ON A MOVING CIRCULAR CYLINDER
Effect of time dependent normal transpiration on the problem of unsteady viscous flow and heat transfer in the vicinity of an axisymmetric stagnation point of an infinite circular cylinder moving simultaneously with time-depended angular and axial velocities and with time-dependent wall temperature or wall heat flux are investigated. The impinging free stream is steady with a strain rate . A re...
full textMy Resources
Journal title
volume 39 issue 1
pages 135- 145
publication date 2020-08
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023